

Tanenbaum-Torvalds microkernel
vs monolithic kernel Debate came in

two waves!
● First wave was in 1992.

Tanenbaum claims
“LINUX is obsolete”.

● Second wave was in
2006. Linus claims “The
whole 'microkernels are
simpler' argument is just
bull,...”

● Linus lost 1st argument
and won the 2nd.

http://www.Free.BlackPatchPanel.com/pme/linux/ukernel.pdf

Tanenbaum attacks with
“LINUX is obsolete”

● 1992 “While I could go into a long story here
about the relative merits of the two designs,
suffice it to say that among the people who
actually design operating systems, the debate
is essentially over. Microkernels have won.
The only real argument for monolithic systems
was performance, and there is now enough
evidence showing that microkernel systems can
be just as fast as monolithic systems (e.g., Rick
Rashid has published papers comparing Mach
3.0 to monolithic systems) that it is now all over
but the shoutin'.”

Linus responds (1992)

● with a lot of ad hominem heat and flame that he
later had to apologize for. But on the main
question “Are microkernels better?”

● “True, linux is monolithic, and I agree that
microkernels are nicer. With a less
argumentative subject, I'd probably have
agreed with most of what you said. From a
theoretical (and aesthetical) standpoint Linux
looses. If the GNU kernel had been ready last
spring, I'd not have bothered to even start my
project: the fact is that it wasn't and still isn't.”

microkernels (1992)

● I question whether Linus really believed this
admission. The fact is that he continued with
LINUX and did not convert it to a microkernel
design. His unerring software engineering
instinct must have told him that it would have
been a mistake.

● But he was not prepared to challenge a
respected and polished professor on his own
home ground of academic debate. Hence this
confession. All the academic pundits were
saying “microkernels are better”.

Are Microkernels better?

● As a result of persistent performance and
design problems, the conventional wisdom that
“microkernels are always better” is not now so
common.

● “Regardless of the advantages of the Mach approach,
these sorts of real-world performance hits were simply not
acceptable. As other teams found the same sorts of
results, the early Mach enthusiasm quickly disappeared.
After a short time many in the development community
seemed to conclude that the entire concept of using IPC
as the basis of an operating system was inherently
flawed.”

● http://en.wikipedia.org/wiki/Mach_kernel

Monolithic kernels (1992)

● I also question the extent to which Tanenbaum
may have been blowing smoke. He had to be
aware of the performance problems
microkernels were experiencing.

● If he could persuade all developers that “LINUX
is obsolete” it could turn into a self fulfilling
prophecy and save him from embarrassment.

2006, the second wave of the
debate, Linus blasts microkernels.

● On May 9, 2006 in a post on Real World
Technologies discussion forum Linus begins
the second round of the debate. This post was
not specifically addressed to Tanenbaum. It
made a number of claims:

● Microkernels are not simpler.
● Microkernels have performance problems.
● SW development is slower for mircokernels.

Linus claims continued (2006)

● Microkernels force designers to use distributed
algorithms which are more difficult to write and
maintain.

● Microkernels are not more secure or stable.
● A failed service often takes the whole system

down contrary to what MK advocates claims.
● Microkernels make it more difficult to handle

coherency issues, which are common in OS
design.

● hybrid kernels are a marketing ploy.

Linus substantiates the claims

● Linus makes these claims in a no holds barred
non equivocal fashion.

● These claims are interspersed with a detailed
analysis of why the problems flow from a prime
microkernel feature, namely separate address
spaces; Or as Linus puts it “separate access
spaces”.

● In further posts Linus amplifies and expands on
his position.

“Many small tools”

● Linus accuses the microkernel advocates of
taking the Unix “many small tools” idea and
attempting to use it in a problem space where it
totally breaks down. They are senselessly
trying to fit a round peg into a square hole and it
refuses to fit.

The concept sounds good.

● “The final (and I think deciding) argument is that
the real argument for microkernels has nothing
to do with speed, ease of implementation,
security, or anything else.

● The real reason people do microkernels (and
probably will continue to do them, and make up
new reasons for why they are better) is that the
concept sounds so good. It sounded good to
me too!”

I did not know how hard it would be.

● “The whole 'make small independent modules'
thing just sounds like manna from heaven when
you're faced with creating an OS, and you
realize how daunting a task that is. At that
point, you can either sit back and enjoy the ride
(which I did - partly because I didn't initially
really realize how daunting it would be), or you
can seek mental solace in an idea that makes it
sound easier than it is.”

Wish for a simpler world

● “So that 'microkernels are wonderful' mantra
really comes from that desperate wish that the
world should be simpler than it really is. It's why
microkernels have obviously been very popular
in academia, where often (you) basically cannot
afford to put a commercial-quality big
development team on the issue, so you
absolutely require that the problem is simpler.”

Escape from reality “OS design is
hard.”

● “So reality has nothing to do with microkernels.
Exactly the reverse. The whole point of
microkernels is to try to escape the reality that
OS design and implementation is hard, and a
lot of work.

● It's an appealing notion.”

Linus mentions Tanenbaum.

● Only at one point in the thread does Linus
actually mention Tanenbaum:

● “Shapiro (and to some degree Tanenbaum)
also makes the mistake of equating different
address spaces with the notion of modularity.
They have nothing to do with each other. You
can be modular without using hardware to
enforce it, and you can generate a horribly
messy system where two processes are
intimately aware of how each other works even
if they are separated by MMU boundaries.”

Linus plugs Tanenbaum's book.

● “That said, I still think Tanenbaum's book on
OS design is one of the best ones around. So
I'll happily disagree with him, and I can still give
the man credit for being a big reason for getting
involved and interested in UNIX in the first
place!”

My oversimplification

● The following slides are my over simplification
of some of the things the critics of microkernels
are saying. (2006)

● I hope I have not distorted them too much.

When all you've got is a hammer,
everything looks like a nail.

● Since the
beginning of
Operating
Systems, when
dinosaurs roamed
the earth, OS
designers have
used process
address
separation to
prevent LUSERS
from stomping on
each other.

interprocess address separation is
the hammer that ...

● microkernel advocates
want to use interprocess
address separation to
reduce OS complexity
and errors.

● Interprocess (thread)
communication is limited
to message passing.
This is essentially “pass
by value”.

● This is a form of
“bondage and discipline
programming.”

Bondage and Discipline
programming.

● seeks to prevent errors by creating a “system” where
errors of a certain type are impossible.

● “system” creators are the “smart” people on the central
committee. They don't trust ordinary developers to “do it
right”, hence this program to control them.

● In the case of μkernels, the disk driver (hopefully) can not
interfere with the video driver, because they are in
separate processes with separate address spaces.

● The Java approach to memory leaks is another example of
“bondage and discipline programming”.

● Pascal is the canonical Bondage and Discipline language.

● Bondage and Discipline programming seems to be favored
in academia

Flaws of Bondage and Discipline
programming

● (Flaw 1) bondage and discipline programming
causes overhead and reduces your
performance.

● (Flaw 2) bondage and discipline programming
won't let you choose the best method to
achieve your goal, so your design becomes
more difficult.

● (Flaw 3) The “smart” people on the central
committee, the creators of the B&D system, are
not as smart as they think they are.

Microkernels have both B&D flaws!

● The overhead associated with context switching and
message checking reduces system performance. (The
MK folks have done a lot of work on this without
completely solving it.) (Flaw 1)

● “The fundamental result of access space separation is
that you can't share data structures. That means that
you can't share locking, it means that you must copy
any shared data, and that in turn means that you have
a much harder time handling coherency. All your
algorithms basically end up being distributed
algorithms.” (Flaw 2)

Dissident voices.
● The TUNES people also have a harsh criticism

of microkernels. They accuse the microkernel
design of “abstraction inversion”.

● http://tunes.org/wiki/Microkernel
● According to them, criticism of microkernels is

almost unknown in the academic world, where
it might be a career limiting move (CLM).

● Their criticisms are very similar to Linus' except
expressed in a more polished academic
language.

http://tunes.org/wiki/Microkernel

Linus proposes an academic
research project!

● In a later post, Linus suggests that a special
computer language be developed for OS
design. Compilers for this language would have
the ability to check statically at design, compile,
link time, the very things that μkernels are trying
to check at run time with the MMU!

● If this could be done, it would obviously be
more efficient than doing it at run time with the
MMU.

● This idea is perfect for academic research!

Tanenbaum replies

● Not on any discussion
forum, but on his own
web page entitled
“Tanenbaum-
Torvalds Debate: Part
II”

● He begins with
expressions of
collegiality;
Tanenbaum is not
Linus' enemy

Minix 3

● Tanenbaum has released Minix 3 under a BSD
like license, an improvement over the original
Minix which was under a proprietary license.
Perhaps Tanenbaum has learned the value of
free software.

● Minix 3 uses microkernel. OS book is updated
to reflect changes in Minix 3.

● Much of the reply is marketing hype for Minix 3.

Minix 3 target

● Minix 3 is initially targeted at:
– Applications where very high reliability is required

– Single-chip, small-RAM, low-power, $100 laptops
for Third-World children

– Embedded systems (e.g., cameras, DVD recorders,
cell phones)

– Applications where the GPL is too restrictive (MINIX
3 uses a BSD-type license)

– Education (e.g., operating systems courses at
universities)

● So Minix 3 does not compete with Linux.

Technical reply

● Tanenbaum does make some reply to some of
Linus' arguments, some of which is unclear,
some of which is clearly wrong, some of which
is not on point.

synchronization?

● “Linus also made the point that shared data
structures are a good idea. Here we disagree. If
you ever took a course on operating systems,
you no doubt remember how much time in the
course and space in the textbook was devoted
to mutual exclusion and synchronization of
cooperating processes. When two or more
processes can access the same data
structures, you have to be very, very careful not
to hang yourself. It is exceedingly hard to get
this right, even with semaphores, monitors,
mutexes, and all that good stuff.”

synchronization methods

● Tanenbaum seems to be suggesting that
Microkernels do not need synchronization
methods, i.e. semaphores, monitors, mutexes,
and all that good stuff.

● But microkernels do have message queues.
● It is the use of message queues that prevents

race conditions in microkernels.

synchronization methods

● But message queues are accessed from all
over the system and they must be kept in a
consistent state. How is this accomplished?

● Answer: synchronization methods, that is,
semaphores, monitors, mutexes, and all that
good stuff.

● So microkernels do not avoid synchronization
methods.

● They simply use a one size fits all approach to
race conditions called message queues.

Linus not object oriented?

● “My view is that you want to avoid shared data structures as much as
possible. Systems should be composed of smallish modules that
completely hide their internal data structures from everyone else.
They should have well-defined 'thin' interfaces that other modules can
call to get work done. That's what object-oriented programming is all
about--hiding information--not sharing it. I think that hiding information
(a la Dave Parnas) is a good idea. It means you can change the data
structures, algorithms, and design of any module at will without
affecting system correctness, as long as you keep the interface
unchanged. Every course on software engineering teaches this. In
effect, Linus is saying the past 20 years of work on object-oriented
programming is misguided. I don't buy that.”

Object oriented?

● “That's what object-oriented programming is all about--hiding information--
not sharing it”

● Tanenbaum is giving the impression that data hiding prevents race
conditions, but it is not true!

● Data hiding (encapsulation) does not mean that different threads of
execution do not access that data at potentially the same time! It does not
prevent race conditions! That is why Java has a synchronized keyword!
What prevents race conditions in the μkernel design is not encapsulation,
but rather a particular way of handling of messages! The Object Oriented
paradigm does not define how messages are to be implemented.

●

●

● So the issue is not object orientation at all!

Kernel constraint compiler?

● Tanenbaum does not respond to Linus' idea for
a OS compiling, constraint checking, computer
language.

What is the MicroKernel really?

● What is the microkernel style exactly?
It is basicly a way of using the MMU to
do some kinds of checking. The extra
code that does this checking runs at
least 100 times per second on every
CPU that runs the OS. To facilitate this
checking, developers must reorganize
the way their code is organized,
breaking the flow of thought and
understanding into a lot of small
pieces.

● All to do some checking that at least in
theory, could have been done at
design, compile, link time once.

● This checking only checks for only
some of the possible coding errors.
Most OSes do not crash because of
stray memory references. There are 49
other crash landings.

Memory
Management Unit

● Academic researchers should be
thinking at a high level.

● They should not be trying to solve low
level problems with low level solutions,
that disrupt how OS designers can
express their designs and
implementations.

Big picture

● Microkernels are a form of Bondage and
Discipline Programming.

● 14 years ago in 1992, Tanenbaum said: “Linux
is obsolete” and “it's all over but the shoutin”.

● 14 years later Minix 3 does not compete with
Linux in its own huge problem space. Neither
does any other microkernel design.

● It is time for microkernel advocates to come up
with something that works on real world
problems or stop shouting!

Copyright

● Copyright (c) 2008 Paul Elliott.

● Permission is granted to copy, distribute and/or modify this document

● under the terms of the GNU Free Documentation License, Version 1.2

● or any later version published by the Free Software Foundation;

● with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

● A copy of the license is included in the section entitled "GNU

● Free Documentation License".

