
Peless

An example project

Where is this presentation?

● http://http.FreeBlackPatchPanel.com/pme/linux/peless.sxi

Peless Choices

I. Choose goal application. X11 text file lister
A) xless, still exists
B) gless does not come with new distros anymore.
C) kless (not the klingon) ditto.

II. Choose programming environment=C++
A) I have experience with C++ and I like it.
B) I have also used Java.

III.Choose X11 library=GTKMM
IV.Implementation details, details.
V.Choose project Home

II B, I have also used Java.

1. Spellchecker
2. Bondage and disipline Language

a) We won't let you make a mistake.
b) Therefore, we can't let you have any freedom.
c) The suits love it.
d) Resources

i. Memory (garbage collector)
ii.Other resources

e) Not open source!

Java memory management

public void myMethod() {
Date date = new Date();
// do stuff
// never worry about deleting
// no memory leaks!
}

C++ Resource management

● Construction is resource acquisition destruction is
resource releasing

void f(char* name)

{

 ofstream out(name);

 out << "hello world" << endl;

 // no need to close out

};

C++ memory

● Static or global memory (don't use. With
exceptions)

● local (stack) memory.
● dynamic memory (new) Big problem.

My C++ memory Philosophy
C++ pointers Don't use them! (almost)

● (not original)
● C++ pointers are a powerful feature in the C++

language. They allow powerful framework classes
to be created, and give the programmer total
control over access to memory. In C++, they are a
necessary reality.

● C++ pointer should be used by experts to create
basic classes like containers.

C++ pointer misuse.

● But for your typical Joe Six pack application
programmer, C++ pointers are too powerful to use.
There are too many subtile ways to create a
memory leak or a reference through a pointer that
is no longer valid.

● This leads to bugs!
● The misuse of C++ pointers is very costly, and if it

is allowed to continue, the SUITS may require us
to use inferior languages that don't have pointers
like JAVA.

Good News: Raw C++ pointers can
be hidden!

● With proper use of C++ tools almost all use of raw
C++ pointers can be hidden. The typical
application program should encapsulate away and
hide almost all uses of C++ pointers using these
tools. This discipline will eliminate memory leaks
and invalid pointer references!

Three common uses for pointers.

● Pointer arithmetic to navigate arrays!
● To pass objects around from method to method or

from object to object.(No ownership(=deletion
responsibility) involved.)

● Object allocation.

pointer arithmetic to navigate
arrays!

● Use the STL vector template instead!
● If you do need to use pointer arithmetic to

navigate arrays get your code checked 3 times by
an expert especially if there is inheritance involved
with the base type.

To pass objects around from
method to method or from object to
object.
● (No ownership(=deletion responsibility)

involved.)
● Use C++ references instead.

Object allocation

● the lifetime of the object corresponds to a program
block ({}) (or a program block that could exist.)
– use local objects instead.

● The lifetime of the object corresponds to the
lifetime of another class.
– use contained sub-objects "hasa" instead.

● The object is truly dynamic and its life time does
not correspond to the lifetime of any other object
or code block. This is the hard case.
– Keep the object inside a "owner" object.

Program Block {}
● Bad
{

 MyClass *

 my_instance_pointer(new MyClass());

 mess_with_it(*my_instance_pointer);

 delete my_instance_pointer;

};

Program Block {}
● Good
{

 MyClass my_instance;

 mess_with_it(my_instance);

};

● The my_instance will automaticly be deleted when
the program block is exited at "}" . It is even less
lines of code!

Digression

If we were coding in java the above would not be good. I forgot to tell
you that the destructor on MyClass pushes the control rods back
into the reactor, ending the nuclear experiment! This is according to
the C++ idiom object construction is resource allocation, object
destruction is resource deallocation. You always push in the
control rods when you are through with the nuclear reactor!
(deallocating it.) When you are coding something in java and you
want something to happen when you are through with an object,
you damm well better code it yourself, because you might not want
to wait for the garbage colector to get it. There is a finalize method,
but don't forget to call it! The reactor can get hot very quickly!

Digression

The JAVA people think that since they handle the
allocation/deallocation of memory so well, from
their point of view, that they do not have to help
handle other resorces. If they did they would have
proper destructors! Memory is not the only
resource! Files need to be closed, and the lights
need to be turned off!

Class lifetime
class NewClass
{
 private:
 MyClass * my_instance_pointer;
 public:
 NewClass():my_instance_pointer(new MyClass())
 {
 OTHER STUFF
 };
 ~NewClass()
 {
 OTHER DESTRUCTOR STUFF
 delete my_instance_pointer;
 MORE OTHER DESTRUCTOR STUFF
 };
 A LOT OF OTHER STUFF
 };

Class lifetime
class NewClass
{
 private:
 MyClass my_instance;
 public:
 NewClass(): my_instance())
 {
 OTHER STUFF
 };
 ~NewClass()
 {
 OTHER DESTRUCTOR STUFF
 MORE OTHER DESTRUCTOR STUFF
 };
 A LOT OF OTHER STUFF
};

truly dynamic lifetime

● The object is truly dynamic and its life time does
not correspond to the life time of any other object
or code block.

● This is the hard case.

truly dynamic lifetime, bad example
● Here is an example where we must create an

object, compute on it, then possibly add to a
container which will take responsibility for
deleting it. This happens a lot in GUI
programming.

{
 MyClass * my_instance_pointer(new MyClass());
 mess_with_it(*my_instance_pointer);
 my_container.add(my_instance_pointer);
 // my_container will now assume responsibility for
 // deletion.

};

truly dynamic lifetime, solution

● Keep the object inside a "owner" object at all
times which has responsibility for deletion. This
"owner" object can be a container or if nothing
else will do a std::auto_ptr or boost::smart_ptr. (I
think of these objects as single item "containers".)

truly dynamic lifetime, good
example

{
 std::auto_ptr<MyClass>
my_instance_pointer_auto(new MyClass());

 mess_with_it(*my_instance_pointer_auto);

my_container.add(my_instance_pointer_auto.re
lease());

 // ownership of the instance (deletion
 // responsibility)
 // is transfered from the auto_ptr to the
 // container.
};

Peless Choices

I. Choose goal application. X11 text file lister
II. Choose programming environment=C++
III.Choose X11 library=GTKMM

A) QT
B) GTKMM

IV.Implementation details, details.
V.Choose project Home

QT vs GTKMM
● QT was invented before the new standard and

templates. It therefore, uses a non-standard way of
handling slots that can now be done in standard C
++.

● QT requires raw pointers in it's interface and
therefore is incompatible with the Paul Elliott
memory philosophy (TM).

● GTKMM is newer with a changing interface.
● GTKMM is not perfect.
● KDE and GNOME will run both QT, and

GTKMM apps!

From GTKMM FAQ:
● 1.5 Why not just use Qt if you like C++ so much?

– gtkmm developers tend to prefer gtkmm to Qt because
gtkmm does things in a more C++ way. Qt originates
from a time when C++ and the standard library were
not standardized or well supported by compilers. It
therefore duplicates a lot of stuff that is now in the
standard library, such as containers and type
information. Most significantly, they modified the C++
language to provide signals, so that Qt classes can not
be used easily with non-Qt classes. gtkmm was able to
use standard C++ to provide signals without changing
the C++ language.

Boost libraries!

● Everyone uses the boost libraries!
● Has basic classes that should be in std:: but they

did not have time to put them in!
● Before developing any class that is so general that

everyone would want to use it, check if it is
already in the Boost libraries!

● Includes powerful functor library!
● Regular expression search library.
● shared_ptr referenced count smart pointer!

Automake, autoconf, libtool, or
bjam?

● It is fashionable to criticize auto*, but have you
looked at the fixed bugs history?

● It has to work in an enormous number of runtime
or build environments!

● When you have come up with something that
works in all these enviroments and has be as
debugged as completely as the auto* tools, contact
me!

● The boost library people assume you are going to
use bjam! They don't provide a “boost-config”.

How I learned IO.

 PROGRAM TEST
 INTEGER I,J
 WRITE(61,800)'ENTER I'
 READ(60,801)I
 J = ICALC(I)
 WRITE(61,802)'THE ANSWER IS',J
800 FORMAT(1X,A)
801 FORMAT(I5)
802 FORMAT(1X,A,I6)
 END

Asynchronous IO

● New fangled asyncronous IO programing.
● Create your main window or main dialog.
● Add your callbacks.
● Call the main event loop, which runs till the end of

the freaking program!
● The freaking UI is in control and your code gets

called back!
● Could be “don't call us, we'll call you programing”

Old way: How does a window
framework do a call back?

Framework

Users classes derived from
Framework classes.

Framework written w/o specific
knowledge of users' classes

User writes his classes later.

How can framework callback
users' classes?

Old way: How can a framework
callback a users classes?

● Answer it can't. The users' class has not been
written yet.

● The framework calls back one of it's own classes.
● But the class called back is polymorphic i.e. with

virtual functions.
● The user derives from this class, overriding the

method that will be called back.
● The user passes this object to the framework as it's

base class. When the framework calls back, the
derived method (written by the user) gets control.

Polymorphic callback Example:
● IBM user interface class library. (Presentation

manager). ICommandHandler has virtual function
called “command”.

● You derive from ICommandHandler overridding
command.

● Pass one of these objects to IBM UICL.
● When the callback happens your derived code gets

control.
● Some people do not like this style.
● And so the concept of signals and slots was

invented!

Qt signals and slots.

● QT was written before all the features of the
current C++ standard was nailed down for general
use.

● QT uses “const char*” for signal names and a
nonstandard moc compiler for signals and slots.

● Trolltech admits this is not as fast as gtkmm's
templates.

● Benchmark:
● http://libsigc.sourceforge.net/benchmark.shtml

GTKMM uses templates for signals
and slots.

● Templates make many people's brains hurt!
● The gtkmm solution uses libsigc++.
● The gtkmm solution is 100% standard C++.
● Templates are here to stay get used to it!
● You can do things with templates that can not be

conveniently done with other software
technologies.

libSigC++

● You can connect the methods of any class.
● You can “bind” in parameters to be passed to

called method.
● You can “hide” signal parameters that are not

needed.
● Don't forget to disconnect the slot when the object

or the parameters go away. (In the destructor.)

String searching

● can search for literals or regular expressions.
● Forward or reverse directions.
● regular expressions can be

– Normal – like perl
– Basic – like sed
– Extended – like egrep.

Search dialog

● This dialog is more
complicated than it
looks!

● Vertical box
– 2 Horizontal boxes

● radio buttons
● checkboxes

● Entry frame
– Text entry.

Glade-2, a point and clicky fancy UI
dialog generator.
● Unfortunately generates

code with raw pointers!
● I uses glade-2 to create the

code, then I Hack the hell
out it, changing pointers to
contained sub objects!

● This makes it
compatible with the
Paul Elliott Memory
management
philosophy (TM).

Boost regular expression searcher.

● Is proposed for C++ standard.
● Boost uses iterator over wchar.
● Gtkmm uses ustrings which uses iterator over

gunichar.
● but gunichar staticly convert to wchar.
● convertion adapter.

You must use a source control
system!

● Even if you are a lone wolf developer, you will
want to be able to track your history and possibly
roll-back changes.

● Unless a mad dog sues you!
● Start using one now, you will need it if anyone

volunteers to help you.

CVS vs subversion.

● CVS is older and more widely used and supported.
● Subversion is new and avoids CVS's hacks.
● Subversion can rename a directory!
●

● I use subversion.
● Both systems allow you to start with a local

filesystem database, and convert to network
system later.

● Put your files in a “leaf” directory, never in the
trunk!

Chose an open source
development site.

● Requirements:
– Free (free beer).
– open source development host site.
– support subversion.

● Berlios: (Berlin) Are there any others?
● http://developer.berlios.de/
●

●Read the Site documentation!

http://developer.berlios.de/

Start up your project, Berlios
● Request userid, and project. (24-48) hours.
● Choose a non guessable password.
● They will give you a shell account on

shell.berlios.de.
● ssh-keygen to generate your self a ssh-key.

– use protocol 2.
– make password non guessable.

● For your shell account, simply copy your
$HOME/.ssh/yourkey_dsa.pub to
"$HOME/.ssh/authorized_keys" on
shell.berlios.de.

Shell script to use BerliOS:

#!/bin/bash
eval `ssh-agent`
export SVN_SSH="ssh -2 -l pelliott"
if ssh-add ~/.ssh/BerliOS;
then
echo Berlios Key added.
else
exit
fi
nohup konsole -T BerliOS --name "BerliOS
konsole" >/dev/null 2>&1 &

exit

SSH access.

● The previous slide will allow you to ssh, scp and
svn to berlios without typing a password.

Import your existing svn tree into
berlios.

● The berlios documentation describes how to
import your existing tree:

● https://developer.berlios.de/docman/display_doc.php?docid=394&group_id=2#import

● Requires a 6 hour wait, but you only have to do it
once.

●

● Check out your source tree from berlios and check
that it is correct.

https://developer.berlios.de/docman/display_doc.php?docid=394&group_id=2#import

SVN usage.

● You should now be able to use svn just as on your
local system. You can:
– commit files.
– track historys.
– checkout files.
– all the other svn stuff.

Checkout your files with SVN!

● svn checkout svn
+ssh://svn.berlios.de/svnroot/repos/peless

●

● This will give you a copy of the project to work
with.

●

● svn commit --editor myeditor my-source-file
●

● This commits your changes

Create a web page to describe your
project!

● Described in
● https://developer.berlios.de/docman/display_doc.php?docid=43&group_id=2
● The web pages generated by Berlios are fixed

format. This page is freeform. Describe in your
own words what the heck your project is and what
it is good for.

● Include a link back to your host berlios.
● http://peless.berlios.de/
●

Get some software testers!

● This step is hard.
●

● Beg and Plead, Beg and Plead some more!
●

● Any bugs that you find fix.
●

● Continue!
●

● Your project has reached the debugging phase!

Debuging with gdb!

● CXXFLAGS=-g ./configure your-parameters
● make
● gdb myprogram
● set args � parameters to program�
●

● You can step to next instruction “n”
● Step into routine “s”
● Set breakpoints run or continue!

